NOTATION

T, time; T, temperature of melt; Ty, initial temperature; T, crystallization temperature of liquid; ¥,
stream function; 5, curl of velocity; v, coefficient of kinematic viscosity; a, coefficient of thermal diffusivity;
X,, characteristic size of region; ég, unit vector of On; axis; 5, relative height of cavity; e;, relative width of
liquid zone (i =1, 3); wp, coordinate grid of region; h, distance between nodes of coordinate grid; A, time
multiplier; Ty — T, characteristic temperature difference; p = pi§, characteristic pressure; R = PrGr, Ray-
leigh number; 7; = xi/}’io, dimensionless coordinates (i =1, 3); ® = (T ——TC)/ (Tq—Te), dimensionless temper-
ature; 7 =p/p, dimensionless pressure; Fo = 7/7, dimensionless time (Fourier number); 0, = »/%,, character~
istic velocity; ¥ =X}/a, characteristic time; Pr =v/a, Prandtl number; Gr = q(T, —T¢)x3/v?, Grashof number.
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UNSTEADY CONVECTIVE HEAT TRANSFER
IN POTENTIAL FLOW

P. 8. Chernyakov UDC 536.28

Analytical relations are obtained for the unsteady temperature field in potential flow over a
flat plate and a cylinder.

Works [1-3] have examined stationary forced convection in potential flow of a ligquid over bodies.

The present paper determines the unsteady temperature fields in longitudinal flow over a flat plate with
boundary conditions of the first and second kinds, with and without allowance for thermal radiation and motion
of the cylinder in the flow with boundary conditions of the first kind. This type of problem is described by the
equations for the fluid temperature T, the velocity potential ¢, and the pressure p:

Ag =0, 1)
ar d @)= aAT 2
"5 + (grad T, grad @)= aAT, (2)
— p,—0.5p(grad P —p 22 — 0@, 7 3
p=py— 0.5p(grad @) —p — (g G

and injtial and boundary conditions on the body surface
% _y, @)

on

(JC, 0)= To (x)’ TI—; = f(xsv t)' A — - g (xs’ t),
€S on Yes (5)
A _(91 = g {(T% T4 T
on "x’es“ ( es ™ =) . =Te

We assume that the thermophysical properties of the liquid are independent of temperature and pressure
and that a similarity transformation xj =vay; has been derived which results in the coefficient of AT reducing
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to 1. Work [4] has shown that the problem (1), (4) has a solution which exists and is unique We shall seek
the solution of the first boundary-value problem, (2) (5) in the class of functions W}’ exp(— ) ©@t) [5]. We
introduce ¢, a function of the spatial coordinate X and the time t, satisfying the cond1t10ns

Yo 0)=0, %o (& D =1 (o 0,

F— [exp (— ) "a‘*;" — div (exp(— @) grad«m} €L,(@),
FEL, Q).

We first consider the internal problem for Eqs (2) and (5). A generalized solution of this problem is
given by the function T = ¢, + &, where 4 belongs to W exp(—(p) {S2¢) and satisfies the integral identity

L
dx; x;

¢
j.y (exp (— cp)%{tl A—FA—exp(—9) ) dxdt=0 (6)
02 : _

i=1

for any function A€ \ff%;éxp(_(p) (@). We shall show that the function & is unique. Let 3, &, be two generalized
solutions of Egs. (2) and (5); then, introducing the notation

A= {m:ﬁz—ﬁl, 0<i<s,
0, S<<t <5y

and using Eq. (6), following transformations we obtain
] 3 do \2
gSexp(—w)[ — + 2( ) ] dxdt + gexp(——(p)mﬁdx=0. )]
z) Q =1 i)

If ¢ is independent of time, from Eq. (7) we obtain « =0, ¢4 = d,. If ¢ is a function of time, then,
from the condition that the pressure and liquid velocity are finite, using the Bernoulli integral (3), we obtain
the result that 18¢/0t| < K,. Then, using the fact that d¢/0t is finite, applying the Sobolev imbedding theo-
rems for the space \il%" {Q¢) {4], and introducing the notation K = S exp (—¢)o’dy, we find that K satisfies the

Q
differential inequality

4K < oK, K(©)=0.

Hence it follows that K = 0.

We now consider the external problem (2), (5). We postulate that at infinity ¢ ~ i/r, 8 ~r
88/0%j ~ r~%:% and write Eq. (7) for the region & = Qp, where Qg is a sphere of radius R containing S; we let
R — , apply the same arguments for ¢ as in considering the internal problem, and obtain the result that ¢ is
unique.

—(1a 5+8)

Replacing the variables x and y by ¢ and ¢, and T by ® = (T —T exp (—@/2a) in Egs. (2) and (5), we
obtain the following equation for @:

Q_Q:Aa(@__;_?j@__i) (8)
ot O0¢? oy? 40?
and the initial condition

O)t—0= exp (-— —) (T, (%) — T=)= B, 9

For the first boundary-value problem the boundary condition is
Oy, o= (G H—T)exp (= 1) = (10)

We shall solve this for longitudinal flow over a flat plate with velocity U.
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Applying a Laplace transform in the variable t to Egs. (8), (9), and (10) and a Fourier transform in ¢,
we obtain

— ’Uz ~1 _ U" —1
@:pBD(p+a;aU2+~) +(f1—pBo( —_aw’a“_) )
4a Y 4a |

v ) . 11

‘P / oy 2r72
X —_———— : a,’Ua—f——'—‘
(=g | p st

Here

—co

O=p | [Oexp(—pt+ing)ddy, By= [ B,exp (i) dy,
[ e

= [ Fexp(iag)de, [, =p | Fyexp(—ph)dt.
e §

Transferring from the transform space to the original in Eq. (11), and using data from [6], we obtain a tem-
perature distribution in the form

B e . ‘
T =T. -~ exp (E(p_)_l_ [‘S‘ B,exp (—(-47 + aéUQa)thcp%) do,

/
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7R at

(1) +
L UVa ‘//ag )exp( V c@

L’_:"«.

Folt = o) Ky (o b, 1) exp(— igay) dczzdv} , 12)

) ‘

Here ¢ =Ux, ¥ =Uy. The local heat-transfer coefficient o @ is calculated from the relation
AU e\[ 0 r o Uz
= Y _exp [ 2 ex U 4+ —
? onf p(?a){at Vi J p( (‘ +4a)

;icpa.)daz— — (

oo

Ky= ]/aguza_,_,l{i erfc(l/t a2U2a+£ + L exp|f|ail?a E)) exp (— ia,g).
¢ 2 4a z 4q V 2 4q

For the second boundary-value problem the boundary condition is

S' Filt—1, a) Ky, 9, o) d%drl,
]

40 U™t ¢

__} :_q_{gz—_}exp(_i):ql

a‘lﬂ) hp==0 A \ 2a

Solving this for longitudinal flow over a flat plate with velocity U, using the same method as in the first
boundary-value problem, we obtain the following expressions for the temperature distribution in the liquid
and the local_ heat-transfer coefficient:

a

(p ~ - 2 szt . o170 a . :
exp S B, exp (— " — iga, — a3l at) do, — > 5 Q¢ —r, a,)K(z, ¥, a,) doczdr] ,

T=T.
+ f14 2a

—co —e 0
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a 2n gex ( —(E—)
v AT, 1O
where

13)
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We find the temperature distribution in the liquid in longitudinal flow over a plate with velocity U for the
condition that for t > 0 the heat flux distribution g(X, t) on the plate is known and there is radiation and absorp-
tion of heat in the surrounding space. With the assumption that I(T—Tm)/Toon =g <1 the boundary condition trans-
forms to the following form:

I NO| = (14)
P $=0 =)

(14) in the same way as for the first boundary-value problem,
we obtain the following formula for the témperature distributlon in the liquid

3 A= .
T—T. —-—él;ep( )[W\ le(t~r, o) Ky (%, . o) dardr
0 —oe

o
©

— U2
— ‘S‘Bo exp (— (agUm -+ ﬁ) t) K@t ¥, o) daz] .
4a

By solving the initial-value problems (8), (9)
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We now consider the motion of an infinite cylinder with velocity U in potential flow of a liquid. Let the

initial liquid temperature be Ty(r, o), and fort > 0 let the temperature distribution f(o, t) be given on the
eylinder surface, The liquid temperature far from the body is T
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With the assumption of potential flow the stream function § and the velocity pofential ¢ have the form
2 UR2

Q= — UR cose, P = sina.
r

This initial-value problem for the temperature distribution in the liquid, following the transformations

at
=P cos = sinB, Fo = ——
=R B b= R p T
reduces to the form
e (o0 1 1 60
—_ . | p 26 | ,
9Fo (apz+p2 o a.o)
Blro=o = {Ty— T=)exp (" 5‘) Qy (B, 0), 1sj

Blp—1 = (f— T)exp (— 2%) = g(B, Fo).

We seek a solution of Eq. (15) in the form

S Petn (4, (FO, 0) csf + By, (FO, 9)sinnp),

n,m=0
n==0
QO = 2 (Qo,n cos flﬁ + Ql,n sin ﬂﬁ).
n=0

Substituting Eq. (16) into Eq. (15), we obtain the result that the functions Ay, ;,, are solutions of the following
problem:

U (P 1 ey )
dFo dp* P op ™
a4, 34, 84, J
3F = ¢ (‘“_“'MH +— M A — An,m+1) , amn

3 e T dp  TmmT R
An,oJFo=O = Qo,n, An,o]psl = Zo,n An,m+1h"0=0 =0, An,m+1lo=l = 0.

The functions By m satisfy this type of initial-value problem. The solutions of Eq. (17) can be found in the

form
= = /
A= W) Mo (B0, ), B B B B0 ), (18)
#=0 e ’ =0 \P ’

where M\ are roots of the equation
Jn (b)) = 0.

It can be shown that the functions J;(\n, k/p) are orthogonal in [1, =) with weight 1/0% by substltutmg Eq. (18)
into Eq. (17) and using the orthogonality of Jn(hn,k/p we obtain the result that Ag m and Bn m satisfy the
ordinary linear differential equations of the first order. By using the method of variation of an arbitrary con-
stant to solve these equations, we find Alg and Bk m* Substituting AK and BE _ into Egs. (18) and (16),
we find the temperature distribution in thé liquid, wl’uch is not presented here because the expressions are very
cumbersome.

NOTATION

?{', three-dimensional coordinate; t, time; r, @, polar coordinates;x, y, Cartesian coordinates: the x axis is along
theplate and they axis is perpendicular to the plate; ¢, velocity potential; A= (grad (p)z; ¥, stream function; T, p, the
liquid temperature and pressure; T, initial liquid temperature; T «, py, the temperature and pressure far from the
body: n, normal to the body; S, the body surface; U, the flow velocity; f, initial temperature distribution on the body;
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g, heat flux density; 2, region occupied by the liquid; T, distance from an arbitrary point in the liquid to the
body; Q¢ =& x [0, t]; g, acceleration due to gravity; p,A,a, the liquid density, thermal conductivity, and ther-
mal diffusivity; o, the integral emissivity; N = 40T%,/AU; L,(Qt), Hilbert space; \i’fg'l €, v‘s’rg;gxp(_(p)(szt),
Sobolev space.
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TWO-DIMENSIONAL TEMPERATURE DISTRIBUTION
IN A CERAMIC-BASED ELECTRODE

L. K. Kovalev and V. N. Poltavets UDC 536.24.02

A study has been made of the thermal processes in the electrode units in an MHD channel;
generalized relationships between the geometrical parameters of the blocks and the param-
eters of the working body have been derived.

Much attention is now being given to large MHD systems containing sectional ceramic electrodes for use
in fully commercial or pilot MHD stations [1]. The viability and working lives of such systems are largely de-
termined by the thermal conditions in the electrode blocks.

There are several papers on the temperature distributions in such blocks; for instance, temperature
distributions have been determined [1, 2] for ceramic electrode modules enclosed in metal matrices. Estimates
have been made [1] of the maximum temperature in a module and the time needed to reach the steady thermal
state for blocks of various sizes and various heat-flux levels at the MHD channel wall.

However, most studies [1-5] are based on solving the thermal-conduction equations subject to major sim-~
plifications (constant temperature in the metal matrix, constant thermophysical parameters of the electrode
materials, etc.), which substantially restrict the applicability of the results to viability evaluation.

§1. Figure la, b shows some typical electrode schemes based on ceramic modules made of zirconium
dioxide ZrO, [2, 3]. A ceramic module is enclosed in a metal cooling matrix, while the elecirical insulation
is provided by plates of Al,0; or MgO. '

The metal matrix in Fig. 1la performs two functions: it cools the ceramic element and also handles the
current through the upper parts of the metal edges. Since ZrO, ceramic is of fairly high electrical conductiv-
ity (o > 10-20 mho/m) only at high temperatures (T >>1100~1200°K) [1], the edge of the matrix must be made
of heat-resisting steel. :

In Fig. 1b, the current is carried by high-temperature metal grid or plate embedded in the ceramic ele-
ment, which reduces the severity of the working conditions for the metal cooling edges and allows one to make
the matrix of a metal of high thermal conductivity such as copper.
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